Biharmonic submanifolds in 3-dimensional (κ, μ)-manifolds

نویسندگان

  • Kadri Arslan
  • R. Ezentas
  • Cengizhan Murathan
  • T. Sasahara
چکیده

where τ( f ) is the tension field of f and dvg is the volume form of M. It is clear that E2( f |Ω) = 0 on any compact domain if and only if f is a harmonic map. Thus E2 provides a measure for the extent to which f fails to be harmonic. If f is a critical point of (1.1) over every compact domain, then f is called a biharmonic map or 2-harmonic maps. Jiang [10] proved that f is biharmonic if and only if

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-totally real warped product submanifolds

We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold (cf. Theorem 2.2). Applying this general theory, we obtain basic inequalities involving the Laplacian of the warping function and the squared mean curvature of C-totally real warped product submanifolds of (κ, μ)-space ...

متن کامل

On 3-dimensional generalized (κ, μ)-contact metric manifolds

In the present study, we considered 3-dimensional generalized (κ, μ)-contact metric manifolds. We proved that a 3-dimensional generalized (κ, μ)-contact metric manifold is not locally φ-symmetric in the sense of Takahashi. However such a manifold is locally φ-symmetric provided that κ and μ are constants. Also it is shown that if a 3-dimensional generalized (κ, μ) -contact metric manifold is Ri...

متن کامل

Biharmonic Capacity and the Stability of Minimal Lagrangian Submanifolds

We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...

متن کامل

Classification of ξ-Ricci-semisymmetric (κ, μ)- manifolds

It is proved that for a non-Sasakian η-Einstein (κ, μ)-manifold M the following three conditions are equivalent: (a) M is flat and 3-dimensional, (b) M is Ricci-semisymmetric, and (c) M is ξ-Riccisemisymmetric. Then it is proved that an ξ-Ricci-semisymmetric (κ, μ)manifold M is either flat and 3-dimensional, or locally isometric to E × S(4), or an Einstein-Sasakian manifold. Mathematics Subject...

متن کامل

Biharmonic Hypersurfaces in Riemannian Manifolds

We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005